Computer Vision

Course Code:		Year:	III	Semester:	Ι
Course Category:	Honors	Branch:	CSE	Course Type:	Theory
					Calculus
	4				&Linear
Credits:		L-T-P:	4-0-0	Prerequisites:	Algebra,
					Probability
					Theory
Continuous		Semester End			
Internal Evaluation:	30	Evaluation:	70	Total Marks:	100

COURSE OUTCOMES					
Upon successful completion of the course, the student will be able to:					
CO1	O1 Understand the fundamental concepts of Computer Vision				
CO2	Apply Image transformation methods to view 2D and 3D images.	L3			
CO3	Apply various Computer Vision techniques to develop applications	L3			

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3								2	2				3
CO3	3								2	2				3

Course Contents					
UNIT-1	Introduction: What is Computer Vision - Low-level, Mid-level, High- level, Overview of Diverse Computer Vision Applications: Optical character recognition (OCR), Machine inspection, 3D model building (photogrammetry), Medical imaging, Automotive safety, Motion capture, Surveillance, Fingerprint recognition and biometrics, Morphing, Video match move and stabilization, Face detection.	CO1			
UNIT-2	Image Formation Models: Geometric primitives and transformations: The digital camera.	CO1,CO2			
UNIT-3	Image Processing, Feature detection and matching: Points and patches, Edge detection, Edge linking, Lines. Regularization theory, Stereo vision, Structure from motion.	CO1,CO3			
UNIT-4	Shape Representation and Segmentation: Snakes and active contours, Level set representations, Split and merge, Fourier, and wavelet, Mean shift and mode finding, Graph cut method.	CO1,CO3			
UNIT-5	Object recognition: Hough transforms and other simple object recognition methods, Shape correspondence and shape matching, Principal component analysis, Shape priors for recognition	C01,C03			

Learning Resources

1. Computer Vision: Algorithms and Applications, R. Szeliski, 2011, Springer.

2. Computer Vision: A Modern Approach, D. Forsyth and J. Ponce, 2nd ed, 2011,Prentice Hall.

Reference Books

Text Books

1. Computer & Machine Vision, E. R. Davies, 2012, Academic Press.

- 2. Computer Vision, Dana H. Ballard, Christopher M. Brown, 1st Edition, Prentice Hall 1982
- 3. Fundamentals of Computer Vision, Shah M., 1997.

e- Resources & other digital material

- 1. <u>https://sites.usc.edu/iris-cvlab/</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc21_ee23/preview</u>
- 3. https://nptel.ac.in/courses/106105216
- 4. https://nptel.ac.in/courses/108103174
- 5. <u>https://www.coursera.org/learn/introduction-computer-vision-watson-opencv</u>
- 6. <u>https://www.coursera.org/projects/computer-vision-opencv-for-images</u>